University of Wisconsin - Madison College of Engineering [EGR] Last Offered: 2014 Spring [1144] Direct Link to this Syllabus:

http://aefis.engr.wisc.edu/index.cfm/page/CourseAdmin.ViewABET?coursecatalogid=145&pdf=True

- 1. M E 447, Computer Control of Machines and Processes
- 2. Credits: 3.00 Contact Hours: 2.5
- 3. **Textbook and Materials :** Computer Controls of Machines and Processes, Bollinger and Duffie, Addison-Wesley, 1988.
- 4. Specific Course Information:
 - a. **Brief description of the content of the course (Course Catalog Description):** Discrete control theory reduced to engineering practice through a comprehensive study of discrete system modeling, system identification and digital controller design. Selected industrial processes and machines utilized as subjects on which computer control is to be implemented. Focus: computer control economics and planning as well as the control theory and programming.
 - b. Pre-requisites or Co-requisites: ME 340 or equiv or cons inst
 - c. This is a Elective course.
- 5. Specific Goals for the Course:
 - a. Course Outcomes:
 - 1. Develop students' knowledge of modeling physical systems for purposes of control system analysis and design
 - 2. Develop students' knowledge of feedback control system architectures and options
 - 3. Develop students' knowledge of analytical approaches for computer control systems
 - 4. Develop students' knowledge of design methods and tools for computer control systems
 - 5. Introduce students to control computer architecture, sensors and software/hardware principles
 - 6. Develop students' knowledge of programmable logic control
 - 7. Develop students' ability to communicate with experts in the various disciplines associated with computer control of machines and processes.

b. ABET Student Learning Outcomes:

- (e) Ability to identify, formulate and solve engineering problems.
- (f) Understanding of professional and ethical responsibility.
- (h) The broad education necessary to understand the impact of engineering solutions in a global and societal context.
- (i) Recognition of the need for and an ability to engage in life-long learning.
- (j) Knowledge of contemporary issues.
- (k) Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.

6. Brief List of Topics to be Covered:

Discrete system modeling

Discrete controller design

Transformation methods
Control computer technology
Sensors
Sequential logic control