

University of Wisconsin - Madison College of Engineering [EGR] Last Offered: 2015 Spring [1154] Direct Link to this Syllabus:

http://aefis.engr.wisc.edu/index.cfm/page/CourseAdmin.ViewABET?coursecatalogid=20&pdf=True

- 1. E C E 420, Electromagnetic Wave Transmission
- 2. Credits: 3 Contact Hours: 3.5
- 3. Textbook and Materials: Field and wave electromagnetics; Cheng, David K; second; 1989
- a. Other Supplemental Materials: None
- Specific Course Information :
- a. Brief description of the content of the course (Course Catalog Description): Transmission lines: frequency domain analysis of radio frequency and microwave transmission circuits including power relations and graphical and computer methods. Electromagnetic waves: planar optical components, pulse dispersion, phase front considerations for optical components, conducting waveguides, dielectric waveguides. Radiation: retarded potentials, elemental dipoles, radiating antenna characterization, receiving mode.
- b. Pre-requisites or Co-requisites: ECE 320
- c. This is a Selected Elective course.
- Specific Goals for the Course :
- a. Course Outcomes:
 - 1. Knowledge of methods of guided (transmission lines and waveguides) and unguided (antennas and freespace links) electromagnetic wave transmission in communications and sensing systems
 - 2. Analytical tools used in the design of such systems. Students will be able to use different strategies to achieve impedance matching in microwave networks; students will understand wave reflection and transmission in one-dimensional structures like waveguides
 - 3. Dimensional space at dielectric and conducting boundaries.

• ABET Student Learning Outcomes :

- (a) Ability to apply mathematics, science and engineering principles.
- (k) Ability to use the techniques, skills and modern engineering tools necessary for engineering practice.
- Brief List of Topics to be Covered :
 - 1. review of Maxwell's equations and plane wave propagation
 - 2. TEM transmission lines, including parallel-plate, coaxial, and two-wire lines
 - quasi-TEM transmission lines, including microstrips
 - 4. time-harmonic analysis of the transmission line equations
 - 5. impedance transformations and reflection coefficients for terminated
 - 6. transmission lines
 - 7. Smith Chart
 - 8. impedance matching networks, including quarter-wave transformers, single-stub tuners, and double-stub tuners

- 9. higher-order modes on parallel-plate waveguides
- 10. rectangular waveguides
- 11. dielectric slab waveguides
- 12. review of magnetic vector potential
- 13. elemental antennas (infinitesimal dipoles and small loops)
- 14. finite-length dipole antennas
- 15. transmitting and receiving properties of antennas
- 16. gain, directivity, radiation patterns, beamwidth, radiation resistance, input impedance, radiation efficiency
- 17. antenna arrays
- 18. communications links